Chapter 1 Introduction

1.1 What Is Visual Computing?
1.2 Target Audience
1.3 Organization of the Book
1.4 Future of Visual Computing
1.5 Companion Web Site

Chapter 2 Abstract Data Structures

2.1 Pointers, Arrays, Lists, and Graphs
 2.1.1 Pointers
 2.1.2 Arrays
 Images as Bidimensional Arrays
 Multidimensional Arrays
 2.1.3 Singly and Doubly Linked Lists
 2.1.4 Graphs
 Adjacency Matrices
 Adjacency Lists
 Trees
 Images as Graphs
2.2 Stacks and Queues
 2.2.1 Application: Area Floodfilling
 2.2.2 Recursive Algorithm
 2.2.3 Floodfilling Using Stacks
 2.2.4 Floodfilling Using Queues
 2.2.5 Implementing Stacks and Queues
2.3 Dictionaries
 2.3.1 Unordered Dictionaries
 2.3.2 Ordered Dictionaries
 2.3.3 Application: Detecting Any Segment Pair Intersection
2.4 Priority Queues
 2.4.1 Primitives
 2.4.2 Application: Reporting All Segment Intersections
2.5 Disjoint Sets
 2.5.1 Application: Image Segmentation
 2.5.2 Union-Find Data Structure
2.6 Geometric Hashing
 2.6.1 Hashing by Chaining
 2.6.2 Application: Object Recognition
 2.6.3 Hashing Point Sets
2.7 C++ Templates, Standard Template Library, and Traits Classes
 2.7.1 Template Classes
 2.7.2 C++ Standard Template Library
Chapter 3 Coordinate Pipelines

3.1 Transformation Principles
 3.1.1 Coordinate Systems versus Modeling Transformations
 Local and Global Coordinate Systems
 Modeling Transformations
 3.1.2 Transformations as Matrices
 3.1.3 Homogeneous and Inhomogeneous Coordinates

3.2 Geometry Pipeline
 3.2.1 2D Transformations
 3.2.2 3D Transformations
 3.2.3 Rotations as Quaternions
 3.2.4 Normal Transformations

3.3 Graphics Pipeline
 3.3.1 Transformation Hierarchies
 3.3.2 Scene Graphs
 3.3.3 Viewing Transformations
 3.3.4 Projections
 Orthographic Projections
 Perspective Projections
 3.3.5 3D Clippings and Projection Transformations
 Orthographic Canonical View Volume
 Perspective Truncated Pyramid
 View Plane Clipping

3.4 Vision Pipelines
 3.4.1 Homographies
 3.4.2 Camera Calibrations
 3.4.3 Extrinsic and Intrinsic Camera Parameters
 Pinhole Camera
 3.4.4 Epipolar Geometry

3.5 Advanced Pipelines
 3.5.1 Log-Polar Transform
 3.5.2 Cylindrical and Spherical Coordinates
 3.5.3 Polarity
 3.5.4 Conics and Quadrics
 3.5.5 Plücker Coordinates
 3.5.6 Eigenvectors and Matrix Diagonalization
 3.5.7 Singular Value Decomposition (SVD)
 3.5.8 Taxonomy of Projections
 3.5.9 Cameras with Lenses
 3.5.10 Tangent Spaces
 3.5.11 Environment maps

3.6 Summary and Perspectives

3.7 Bibliographical Notes
Chapter 4 Images

4.1 Application: Warping and Morphing Images
 4.1.1 Image Warping
 4.1.2 Morphing
 4.1.3 Compositing with Alpha Matting
 4.1.4 View Morphing

4.2 Interpolations
 4.2.1 Resampling & Anti-aliasing
 Convolutions
 Discrete Convolution Kernels
 Fourier Analysis
 Anti-Aliasing
 Super-Sampling
 Reconstruction Filters
 Phase Correlation
 4.2.2 Barycentric Coordinate Interpolations
 4.2.3 Elliptical Weighted Average Interpolations
 4.2.4 Super Resolution

4.3 Colors
 4.3.1 Radiometry and Photometry
 4.3.2 Color Spaces
 Color Matching and Chromaticity Diagram
 XYZ Color Space
 RGB Color Space
 HLS and HSV Color Spaces
 CMY(K) Color Space
 L*a*b* Color Space
 Pseudo-Coloring and Other Miscellaneous Color Techniques
 4.3.3 Physical Color Phenomena
 Fluorescence and Phosphorescence
 Iridescence
 Fresnel Effect
 4.3.4 Perceptual Color Phenomena
 Simultaneous Constrast
 Mach Bands
 Color-Appearance Models

4.4 Halftoning and Dithering
 4.4.1 Digital Halftoning
 4.4.2 Dithering

4.5 High Dynamic Range Imaging
 4.5.1 Light Probes
 4.5.2 Tone Mapping

4.6 Image Pyramids
 4.6.1 Mipmappings
 4.6.2 Gaussian & Laplacian Pyramids
 4.6.3 Applications of Scaled Representations

4.7 Bibliographical Notes
Chapter 8 Higher Dimensions for "3D"

8.1 Nearest Neighbours
 8.1.1 Application: 2D Texture Synthesis
 8.1.2 kD-Trees
8.2 Clustering
 8.2.1 Application: Color Quantization
 8.2.2 Clustering by kMeans
8.3 Mathematical Techniques
 8.3.1 Linearization
 Application: Closest Pair of Points
 Lifting for Designing Geometric Predicates
 8.3.2 Approximating Distances in Large Dimensions
8.4 Bibliographical Notes

Chapter 9 Robustness

9.1 Identifying Weaknesses and Defining Robustness
9.2 IEEE 754 Floating Point
9.3 Filtering Predicates
9.4 Predicate degrees
9.5 Overview of Libraries
9.6 Bibliographical Notes