The addition of MIDI capabilities to the 3.0 version of an already formidable multimedia application is amazing. In typical Sonic Foundry style, the execution of this feature is solid and uncompromising. While ACID is not a tool to edit or create MIDI files and does not have the depth of tools that a dedicated MIDI editing application might have, the new MIDI features expand ACID’s creative potential dramatically. In addition to the ability to include MIDI songs in your project, ACID 3.0 lets you change the instrumentation and perform other simple modifications as well as record your own MIDI tracks straight into the timeline. The surprising thing about all of this, especially considering the complexity of MIDI, is that the simplicity of ACID remains.

MIDI

MIDI stands for Music Instrument Digital Interface. It is a relatively simple and universal computer communication standard that allows synthesizers, sequencers, drum machines, electronic instruments, controllers, and computers to talk to one another. MIDI data is not audio data that can be used to create noise out of a speaker, unlike *.wav or other media files with audio data. Instead, it is a set of instructions that tell a MIDI instrument how to play. In the case of your computer, your sound card may act as a MIDI instrument or device. While MIDI is a fairly simple standard, the huge variety of devices and possible configurations can rapidly lead to confusion.

It is very important to understand the distinction between a MIDI device that creates sound out of your speakers and the actual source of the MIDI data itself. One of the easiest ways to identify this difference is to look at the size of a MIDI file versus the size of an audio file. Thirty seconds of MIDI data is only a very small fraction of the size of thirty seconds of audio data, no matter how highly compressed it is.

A simple example of a MIDI device is a MIDI keyboard plugged into your computer. The simplest MIDI keyboard is only a “dummy” device that outputs MIDI data such as the note played and how long the key is pressed. The keyboard does not actually make any music by itself, but sends this MIDI data to the sound card, where it is interpreted and then output to your speakers. Ultimately, the quality of the sound depends on the quality of the device that interprets the MIDI data and not on the device that generated it. Some keyboards do make sounds by
themselves without being plugged into your computer. These synthesizers and pianos may be thought of as two MIDI devices in one: one to generate the MIDI data and one to interpret this data and output sounds. Many times, these devices will have two or more outputs, one or more for MIDI data and one for audio out. The sound that comes straight out of the keyboard into an amplifier will sound very different from the MIDI data as interpreted by your sound card.

In ACID, “MIDI” means MIDI data and not the sound produced by your MIDI instrument. If you have a high-quality keyboard with excellent audio output, you may want to record the audio signal into ACID, just as you would record any audio source (see Chapter 6). MIDI files, MIDI tracks, and recording MIDI data in ACID are MIDI data issues.

MIDI Standard

The first version of the MIDI standard was released in 1983 as a way to ensure that all electronic instruments (and now home computers) would speak the same language. While the protocol has been modified and extended a number of times in the intervening years, the basics remain the same.

MIDI Data

The stream of MIDI data from a MIDI keyboard or a MIDI file being played back in ACID contains information about the music to be produced by the MIDI playback device (your sound card synthesizer). For a single note, this information includes (among other things) the key of the note; how long it is played (duration); the instrument used (voice, patch); how hard the note is played (velocity); whether it is sustained with a sustain pedal; how it fades after the note is released; modulation; volume; and panning. As one example of MIDI data, the key or pitch of a note can be expressed as a numerical value from 000-127. This gives MIDI a total range of 128 semitones, or half-steps, which is considerably more than a standard 88-key piano keyboard. Figure 10.1 shows this range against a piano keyboard. The frequency of the sound is marked in Hertz (Hz) along the top of the diagram.

Figure 10.1

The total range of possible MIDI notes extends well beyond a standard keyboard and well below the threshold of human hearing.

General MIDI

There are 128 instrument sounds (patches) in the MIDI standard. General MIDI (GM) specifies how that basic repertoire of 128 sounds is assigned to the various patch numbers. These may be numbered 1-128 or 0-127. These sounds can be broken up into sixteen family groups.
The General MIDI standard was created so that generic Standard MIDI Files created on a sequencer or notation application may be played back on another device while preserving the integrity of the original selection. Another part of this standard is a separate set of percussion instrument sounds, usually assigned to Channel 10. This is a special instrument (patch), since each note on the keyboard may be assigned to a different instrument (for example, C= snare, D = woodblock, E = cymbal).
Different companies have expanded on the basic GM standard over the years—for example, Roland uses what it calls GS (General Standard) and Yamaha uses XG—but all basically function the same way and are largely compatible. All of these standards specify only how the instruments are organized and do not have anything to do with the quality of the sound or the type of sound synthesis.

MIDI Synthesis

The most important issue in sound card quality as it relates to MIDI is synthesis of the data into sound. Up until this point, the quality of your sound card has not mattered very much when working with ACID. Beyond a certain basic level, all sound cards play back and output audio files with fairly high fidelity. Of course, there may be important differences in the quality of the card itself, such as whether it outputs analog or digital signals and how electronically “quiet” it is, but essentially all cards play back media files the same way. Even consumer-level hardware outputs very high-quality sound. MIDI is a different story.

FM Synthesis

The quality of your sound card’s MIDI is very important if you use it to synthesize MIDI data, as most people do. At the lowest quality levels, MIDI data can be interpreted by the FM synthesizer on your sound card. This device will probably sound a bit like a video game. Unless you are going for a Casio sound as Trio famously did with “Da Da Da” back in the early Eighties—or you want only artificial electronic-sounding instruments (perfect for techno or other electronica genres)—FM synthesis is limited. Most sound cards come with some sort of hardware-based FM synthesizer that may even be the default MIDI playback device. Since this is usually on the sound card itself, your computer does not need to process any information when playing back MIDI files, it only needs to send the MIDI data to the sound card. This frees up your CPU for more important tasks and is a real advantage. Many games use the hardware FM synthesizer on your sound card for just this reason.

Wavetable Synthesis

A step up in quality from FM synthesis is wavetable synthesis, which interprets MIDI data and then plays back this data using actual samples (not unlike *.wav files) from real instruments. This is a huge improvement over a basic FM synthesizer and may be all you ever need. Keep in mind that the quality of the sound from wavetable synthesis depends on the quality of the samples, so wavetable is not a magic way to get perfect MIDI. On a sub-$100 sound card, it is unlikely that the samples are going to be of the highest quality. On the high end, for example, professional-level electronic pianos often have extremely high-quality samples from real instruments that most of us would not be allowed to touch in real life.

Wavetable synthesis on a sound card is sometimes hardware based. This means that the MIDI instructions are sent to the card and played back and mixed on the card, which is where the instrument samples (wavetable) are stored. Generally speaking, this is good, since this means that the samples that make up the wavetable do not take up any memory (RAM) on your computer. Many popular sound cards load the wavetable into RAM, which can impede your computer’s performance. Some sound cards allow you to replace the samples on the wavetable with other samples, either of your own creation or as created by professionals. Examples of this are Creative Labs and Ensoniq SoundFonts and the more general DLS (DownLoadable Sounds) standard.

http://www.muskalipman.com
Wavetable samples are similar to ACID loops and fall very near one another on a musical continuum. Samples typically used for MIDI applications are shorter in duration than most ACID loops and are most frequently only a single note. With the right software—say, Sound Forge and Creative Labs Vienna—you can edit *.wav files to be used as loops in ACID from SoundFont samples or convert ACID loops into SoundFont samples.

Software Synthesis
So far, the discussion of synthesis has focused on your sound card and what it can do in terms of MIDI. In the past, sound cards have been a critical part of the MIDI equation since computer memory (RAM) and CPU speed were at a premium and needed to be optimized. It was very important for the sound card to take care of as much of the MIDI processing as it could to free up the rest of your computer for other tasks. While we’d all like to maximize our computer’s performance, it is not as important to free up RAM or CPU cycles anymore. Modern multimedia machines in the 21st century are quite powerful and are loaded with RAM. This has led to the possibility of using a software synthesizer to interpret MIDI data. As with any software on your computer, software synths get loaded into RAM and use your CPU to generate music. Perhaps surprisingly, many of the most popular sound cards with wavetable synthesis actually load the wavetable samples into RAM anyhow, although the actual wavetable synthesizer is on the sound card itself. The great advantage to this is that you do not need to be limited to your sound card’s hardware. Most sound cards also come with some sort of software synthesizer. If you have a decent sound card but are unhappy with the MIDI playback, you might consider purchasing a good software MIDI synthesizer instead of buying new hardware. See the next section on the limitations of using a software synth with ACID.

A huge variety of software-based synthesizers are available, including software emulation of FM synthesis, ancient tube organs, classic arena rock synthesizers, some of the best modern synthesizers from famous manufacturers, and wavetable synthesis. Microsoft has a DirectX SoftSynth included with DirectX7 that is easily and extensively used in Windows applications, including ACID; it is optimized to use as few resources as possible. Ultimately, this SoftSynth uses your sound card to produce the actual sound.

Configuring MIDI in ACID
As mentioned, the quality of the MIDI output from ACID does not depend on ACID but on your sound card. Configuring ACID to use the correct MIDI device can be a complicated task. Since wavetable synthesis is often the highest-quality synthesis on a sound card, getting ACID to output wavetable samples properly is important. Unfortunately, wavetable synthesizers often use some of the same circuitry that the sound card needs to play back regular media files, and this can cause conflict. This section is going to discuss how to configure ACID MIDI tracks to get the highest quality and talks about some workarounds for a few potential problems.
Preferences
To begin configuring ACID for MIDI, from the Options menu, choose Preferences. In the Preferences dialog box, click the MIDI tab. The list at the top of the tab contains all of the possible MIDI devices that are currently available on your system. This list is identical to the devices listed in the Windows Multimedia Properties dialog, which can be accessed by clicking the Start button on the taskbar and selecting Control Panel. Then, in the Control Panel, double-click the Multimedia item and click the MIDI tab. You can add new instruments to the list in this dialog box, but that is usually automatically done when you install the software for a new device. The list of instruments in ACID can be made a subset of all instruments by selecting only preferred instruments (see Figure 10.2). Notice that the title of the list in ACID is “Make these devices available for MIDI track playback and Generate MIDI Clock.” This means that you can route ACID MIDI tracks through these devices for playback; you cannot route tracks through any of these devices and render the track to an audio file (see the next section).

Figure 10.2
Select a subset of devices in ACID to make available for playback and MIDI Clock generation.

MIDI Playback—Track Routing
While there are a large number of ways to interpret and play back MIDI data on your computer using any number of hardware and software devices, there is only one way to use MIDI to render a project in ACID. On the Track Header for MIDI tracks, the track must be routed through the Master device, which is the DirectX SoftSynth that ACID uses internally to process MIDI data. Click the Device Selection button (the Bus Selection button on audio tracks—see Figure 10.2) to see the list of available devices. The specific device that is available is set up on the Audio tab in the Preferences dialog box (see Figure 10.2).

NOTE
MIDI tracks must be routed through the Master bus in order to be rendered with the project. All other devices are external to ACID.
ACID MIDI tracks need to use the Master bus (DirectX SoftSynth) to render projects. Other MIDI devices listed on the Bus Selector (see Figure 10.2) act as external devices and are used only for playback. All MIDI tracks in a project automatically use the same device; changing the device on one MIDI track changes all MIDI tracks. As one example, if you are using a Yamaha SXG software synthesizer, your project will sound as if the MIDI track was being mixed into the project. In reality, the audio tracks in the project are mixing in ACID, but the MIDI track is being processed by an external device (software, in this case) that is mixed with the output from ACID outside of ACID on the sound card. Therefore, when you render the project, the MIDI track is silent. There is a way around this problem, however.

Track routing of MIDI devices also has an impact when using other applications simultaneously with ACID. Typically, only one application can use any particular device at a time. So, if you are using Cakewalk SONAR and it is using the B synthesizer on your sound card, you will be unable to use that synthesizer in ACID. Fortunately, most sound cards come standard with at least one hardware synthesizer and one software synthesizer. Installing additional software synthesizers is also another option. MIDI track routing is also important when generating MIDI Time Code and Clock, as discussed later in this chapter (see “Recording Audio Output from MIDI Playback”).

MIDI Rendering—Track Routing

The most important aspect of using the Master device for MIDI is when you render projects, as discussed above. Since the Master device is internal to ACID and the other devices are external, tracks that use these devices for MIDI playback will not be able to take advantage of any FX or pitch shifting. Notice that the Master device track (bottom) in Figure 10.3 has an FX button, while the other track does not.

Rendering projects with MIDI tracks is exactly the same as rendering any other project and is discussed in detail in Chapter 12. Just to repeat: If you render a project and find that the MIDI track is silent, but the track previews when you play back the project, the problem is that you are not using the Master device for the MIDI tracks.

Working with MIDI

ACID 3.0 is not a MIDI editing or creation tool. Still, ACID deftly handles MIDI files—going beyond simply allowing you to include MIDI in your project—by matching the tempo and beat of the MIDI file to the project. Unlike audio files, tempo, beat, and measures are an inherent part of the MIDI file, making this a straightforward task.
Adding MIDI to ACID

Adding MIDI files (and, thus, MIDI data) to a project is as simple as adding any other type of media file to ACID, although the data itself is fundamentally different. To add a MIDI file (*.mid, *.smf, or *.rmi) to ACID, use the Explorer window to locate and preview the file, then double-click it or drag it to the timeline. A blank MIDI track is inserted into the timeline and you only need to paint or draw an event on the timeline to add the data (see Figure 10.4). MIDI events do not display waveform information as audio events do, since MIDI files are not composed of audio data. Instead, the short horizontal lines in the event roughly correspond to the duration of individual notes while the vertical position roughly indicates the tone or pitch of the notes. This is meant to provide visual cues that correspond to the contents of the event and, like waveforms, is very useful in eyeballing alignment of events in ACID. As with other types of files, the tempo and beat information inherent in the file is used to synchronize the MIDI data with the project and with other media in the project. Key (pitch) information is not a separate part of a MIDI file and cannot be detected by ACID.

Figure 10.4
A MIDI track and events as inserted into an ACID project.

Since MIDI files are often longer than just a few seconds, MIDI events are not usually looped, although they will loop if the events are made long enough. When you begin drawing a MIDI event on the timeline, no matter where you begin, the event will start drawing at the beginning of the event (as with all events). This can make finding short sections in the middle of a five-minute MIDI file difficult to find. One way to deal with this is to draw out the entire event and locate the parts you want, splitting the event where needed (press S on your keyboard). Also try using the Slip Trim technique, where you can move the media around within the event without changing the event boundaries: Press and hold the Alt key while dragging inside an event.

MIDI Track Properties

As with standard audio files in ACID, a number of variables can be changed in the Track Properties dialog box for MIDI files. In addition to pitch shifting and markers, you can also change the instruments used in a MIDI file from within ACID.

General Tab

The General tab looks and functions much like the General tab in all of the other track types.

- The **Reload** button allows you to reset any changes you’ve made to the MIDI track back to the defaults of the MIDI file by reloading it into the project. The **Replace** button lets you browse for another MIDI file to use in place of the current one. This is most useful when you have used a number of envelopes on the main timeline and don’t want to have to redo them or when you have edited the MIDI file in an external application and saved it to a new name. The **Save** button saves the root note to the MIDI file, but it does not save any other information. Most of the changes made in the Track Properties dialog box are saved at the project level when you save the project.

http://www.muskalipman.com
The Track type and other information about the MIDI file cannot be changed.

Pitch shift allows you to adjust the key, or pitch, of the MIDI file without setting a root note on the Voices tab. The shift is measured in semitones, or half-steps, and is limited to $+/-24$. The changes made here are reflected on the Track Header.

The **MIDI timeline** graphically displays the MIDI information. Individual horizontal lines represent individual voices or instruments. The length of the line shows the duration of individual notes. The up and down wiggle of the line corresponds to the pitch of the note, although this is only a rough visual indication and is not particularly accurate. ACID is not a MIDI editing application, and details in pitch are, therefore, not very important. You can create markers and regions on the timeline, but they can’t be saved with the MIDI file by using the Save button at the top of the window. Instead, you will need to save this information with the project.

Voices Tab

While ACID is not a MIDI editing program, you can change the voices or instruments used in a MIDI file on the Voices tab. Here’s how:

- **The Root note** functions the same as in other Track Properties dialog boxes. Most MIDI tracks will use Don’t transpose as a root note, since MIDI events are usually longer and may contain internal key changes. If you would like a MIDI track to change key as the project does, set the root note of the MIDI file to be the same as the project key. This will ensure that the MIDI file will play back in the default key it was created in and will not be transposed initially. Transposition for MIDI files poses less of a distortion problem than with audio files. The root note can be saved to the MIDI file using the Save button at the top of the Track Properties window.

- A **Voice set** is the set of voices or instruments for MIDI. Windows and most sound cards come with a default set of sounds (usually 128—see Table 10.1), but you can get additional sets. Some voice sets might be grouped by genre (for example, a techno set) or may specialize in a particular instrument (for example, a piano voice set). The Voice set list in ACID allows you to select additional
DownLoadable Sound sets (DLS) on your computer. As the name suggests, DLS files have a *.dls extension and can be downloaded from a number of sites on the Internet. Some examples of some DLS sets are the Roland GS or Yamaha XG sets. DLS sets use the DirectX SoftSynth for playback and thus can be mixed into ACID projects and rendered out using the Master device. Both DLS-1 and DLS-2 formats are supported in ACID, but your sound card may not support both. The difference between the two is not important in ACID. The default GS sound set (16 bit) is found here: C:\WINDOWS\SYSTEM32\DRIVERS\GM.DLS. The **Load** button allows you to add DLS files to the Voice set list.

TIP
The Get Media from the Web option on the File menu allows you to get free DLS sets from Sonic Foundry.

The Voice set list occupies the largest section of the Voices tab and allows you to change the voices that are played back in the MIDI file. Changes made to these options are not saved to the MIDI file, and the Save button does not make any of these changes permanent. The changes made here can be saved with the project, however.

- **The Channel** sets how the voice is routed in the MIDI device (in this case, the sound card). There are sixteen possible MIDI channels, and multiple voices can be set to a single channel. By and large, it doesn’t matter what channel is selected for which program, but the drums have been traditionally placed in Channel 10. Many MIDI files will have multiple percussion voices all set to Channel 10.

- **The Program** is really the voice selected, and it is the most important control on the tab. Sometimes called a patch, voice, or instrument, the program can be selected by clicking the triangle (arrow) next to the instrument name on the list. This will drop down a rather long list (depending on the Voice set selected and the MIDI device used for output) that has all of the instrument names on it. To preview an instrument sound, click it once on the list. This selects that instrument and allows you to hear how it sounds in your project while it is playing back. To select an instrument (program) and close the list, double-click the entry.

This list may be subdivided into a number of banks (see Figure 10.6), each of which contains a different set of patches (programs). Anything on the list can be selected, regardless of the bank. The voices and banks that are available again depends on the Voice set and the MIDI output device selected.
The Mute and Solo buttons function to mute and solo individual voices in the MIDI file. Multiple Solo buttons can be pushed at a single time, as can multiple Mute buttons, of course.

The Volume and Pan sliders likewise function to adjust the volume and panning of individual voices, giving you more control over the mix of the MIDI file. The Pan sliders can be especially useful in creating a larger sense of space in a MIDI file, which are usually all bunched up in the middle.

NOTE

DLS sets are similar in many ways to the proprietary SoundFonts from Creative Labs and Ensoniq. SoundFonts can be converted to the DLS format with the right software (such as Audio Compositor or Awave Studio), but some quality may be lost as many SoundFonts use audio filters (for example, compression or low-pass filters to make the various notes in a set more uniform).

MIDI Tracks on the Timeline

MIDI tracks and events behave much the same as other tracks and events in ACID. The Track Header contains Mute and Solo buttons as well as a Multipurpose slider to control panning and volume. Tracks and events can be pitch shifted by right-clicking the track header or an envelope or by pressing the + or − keys on your keyboard’s number pad. Unfortunately, MIDI tracks cannot take advantage of Volume or Pan Envelopes and, since MIDI tracks cannot be routed through a bus in the Mixer window, they cannot use FX envelopes, either. Besides these limitations, everything else is the same. See Chapter 2 for more information on working with tracks and events in general in ACID.
Recording MIDI

Just as you can record an audio performance into an audio track in ACID, you can also record a performance from a MIDI device into a MIDI track. In this case, MIDI data is recorded (note, duration, instrument, and so on) and not audio data. This is an important distinction, since audio data takes up much more space on your computer but can also be manipulated in different ways. Audio data, for example, can be modified with envelopes and routed through auxiliary busses, while MIDI data allows you to change the voices and instruments used.

Recording MIDI Data

Recording the performance data from a MIDI instrument live while a project is playing back is perhaps more simple than recording audio data. The procedure is much the same (see Chapter 6) and you don’t have to worry about the many problems surrounding recording audio through a microphone, such as ambient noise and recording levels. To record MIDI data from a performance while an ACID project plays back:

1. Move the timeline cursor to the position where you want to start recording.
2. On the Transport bar, click the Record button or press Ctrl + R on your keyboard.
3. In the Record dialog, select the MIDI option Record type (see Figure 10.7). At this point you should be able to play your MIDI device, the meters should jump, and you should be able to hear the audio. If you can’t hear anything, but the meters jump, see the following section on “Monitoring.”
4. Click the Start button. The project begins playback and the recording starts.
5. Click the Stop button to end the recording.

A MIDI file is saved to your computer and a new track is inserted into the project with an event that contains the recording. The name of the file and the location where the file is saved can be set up in the Record dialog box in the File name and Record folder boxes. It is a pretty good idea to set up a folder dedicated to holding your recordings instead of using the default location where ACID was installed.

Figure 10.7
The Record dialog.
The files are automatically named and numbered according to a default scheme: Record Take 1.mid, Record Take 2.mid, etc. While the file name can be changed in the Record dialog, ACID defaults back to this numbering for every take. As with all tracks, the name of the track is taken from the name of the associated media file. If you alternately record both Audio and MIDI data, the file names will continue to increment (for example, Record Take 1.mid, Record Take 2.wav, Record Take 3.mid, etc.).

NOTE

Unlike audio recordings, MIDI data cannot be recorded into separate takes by turning on Loop playback mode while recording. This is because regions cannot be saved with the MIDI file but only with the project.

Monitoring MIDI Performances

When recording MIDI data, ACID is not recording audio data. Therefore, it is not necessary to hear what you are playing in order to record MIDI. The meters in the Record dialog box will still jump and data will still be recorded to a track even if you can’t hear anything. Obviously, this makes performance difficult, so you should select a device to monitor your performance. From the Options menu, select Preferences, and then, in the Preferences dialog, go to the MIDI tab. On the MIDI Thru device for recording option, select a MIDI device. Only devices that are selected on the list at the top of the tab will be available, as shown in Figure 10.8. Some devices (for example, Sonic Foundry MIDI Router) cannot be used directly for playback. Some software synths will not respond quickly enough for accurate monitoring and will produce significantly delayed audio. In any case, what you hear is not what is being recorded: MIDI data is being recorded, so the actual device used to monitor the performance is simply a matter of personal preference.

Figure 10.8

The MIDI Thru device for recording is used to monitor MIDI performances.

While you can turn the volume up too loud on a MIDI track and cause clipping, it is not possible to cause clipping on the meters in the Record dialog box by playing MIDI data too loudly.
Selecting an Instrument

The MIDI data recorded into ACID is recorded without a specific instrument selected. To change the voice or the instrument used in the track, open the Track Properties dialog box for the newly created track. Then go to the Voices tab and, under the Program data field, click the arrow and select a Bank and instrument (voice), as shown in Figure 10.9. This new instrument information is not saved with the MIDI file, even if you click the Save button at the top of the window. Instead, instrument information is project specific and will be saved with the project that contains the media file. To make this a permanent part of the MIDI file, you will need to use a MIDI file editing application.

![Figure 10.9](http://www.muskalipman.com)

Selecting an instrument (program) in the Track Properties dialog.

Recording Audio Output from MIDI playback

Selecting various MIDI devices in the Track Header for MIDI playback was discussed in the section on “Track Routing.” While any MIDI device on your system, both hardware and software, can be used to play back MIDI data in ACID, you can render only the audio output from MIDI tracks that use the Master (internal DirectX SoftSynth) device. It may seem like a tease to be allowed to select from a large list of possible MIDI devices but not have the output rendered to the final media file. Remember that these alternate MIDI devices are to be considered as external devices. They should be thought of as synthesizers external to your computer that receive MIDI data from ACID and then send analog audio output back into your sound card’s AUX port. As with all audio that comes into your sound card, the sound from these external devices can be recorded into an ACID track. This will record the output from these devices as an audio file, just as you would record any other audio source (see Chapter 6). The most important concept to remember is that you are not recording MIDI data (to be discussed later), but you are, instead, recording the analog audio signal from an external device. To do this:

1. Insert a MIDI file into a track and solo the track.
2. In the Track Header, select the MIDI device you want to use.
3. In your sound card’s mixer, find the Record settings or Windows Record Control panel (see Chapter 6) and isolate the output from the MIDI device (see below). This will not be the MIDI output (which will be your sound card’s default MIDI). This is the most difficult step, and it is discussed in more detail later.
4. In ACID, click the Record button.
5. In the Record dialog, make sure the Record type is Audio. Remember, you want to record the audio signal, not MIDI data.
6. Set the Record from to Start of project.
7. Click Start.
8. The project (with the MIDI track soloed) will play back using the MIDI device selected. Click Stop when finished. A new track will be inserted with a Beatmapped audio file of the MIDI track.

This only briefly reviews material covered in more detail in Chapter 6. Keep in mind that you are recording an audio signal. The hardest part is going to be figuring out how to isolate the audio from the MIDI device for recording (Step 3). This may require some trial and error, because every sound card is different. Here is an example using one of the popular SB Live! series of cards:

1. In the Windows Control Panel, double-click the Multimedia item and make sure Show volume control on the taskbar is selected on the Audio tab.
2. In the taskbar tray, double-click the Volume control (speaker icon).
3. In the Play Control dialog, from the Options menu, select Properties.
4. In the Properties dialog, select the Recording option.
5. Deselect all options except the Wave option (the Wave item should be the only one selected—see Figure 10.10).
6. Click OK.

Figure 10.10
The record mixer dialog box for an SB Live! Sound card in Windows.

You can leave the Record Control dialog box open while you record the MIDI track to an audio file in ACID to adjust the recording gain. For this sound card, the Wave option is any sound produced by the sound card that will be output to the speakers. In this case, the signal will be very clean since it will go from the sound card directly to the recorded audio file on your hard disk.
It is also possible to record the output from another application—for example, a specific MIDI playback or editing application—or record the audio data from a live performance as it is played back through another application. This is going to require some deft juggling of the various MIDI and Wave devices on your computer, making sure that the MIDI application and ACID use different devices for playback. When conflicts occur, ACID will most often gracefully display an error message saying that playback cannot occur since the device is already in use (see Figure 10.11). Click the Details button in that dialog box to see which device ACID is trying to use and then change either ACID or the other application. At times, unfortunately, one or both applications may crash or lock up as they both struggle to use the same device for playback and recording. You may be able to select the “What U Hear” option in the mixer for SB Live! cards to record the audio data you want.

Figure 10.11
A device conflict error message in ACID (but not a crash!)

TIP
If you’ve been scouring this book looking for the best way to crash ACID (or any other MIDI application), this is it: Try to use the same MIDI device with two different applications at the same time. To avoid conflicts, be very cautious about setting up MIDI devices in applications you are going to run simultaneously. Most of the time, ACID will handle these conflicts gracefully with an error message, but they can sometimes cause your system to hang.

MIDI Triggers and Time Code

ACID can act as a MIDI device in a studio setup, both outputting MIDI Time Code (MTC) to other devices and accepting MIDI triggers from other devices and applications. The purpose of this is to synchronize ACID with your MIDI setup by allowing other devices to start ACID playback or to start and synchronize other devices from within ACID when you start playback of a project. The MIDI device or software application needs to be able to send and/or receive MTC, so simple dummy keyboards will not work. More complex synthesizers with sequencers, however, often have this capability. In professional MIDI studios, there is often a small box that is dedicated to generating timecode and synchronization and sometimes called a controller or a sync unit.
MIDI Time Code (MTC) is a standard way of measuring time in MIDI and is not the same as a MIDI Clock. MIDI Clock is based upon musical beats from the start of a song, played at a specific tempo, and is therefore relative to time in the real world. Both MTC and MIDI Clock data can be used to trigger ACID and can be generated by ACID to trigger other devices and applications. MTC is not the same as timecode as used in video, although the two can be set to measure time the same way. For clarity, in this book, “timecode” is used to refer to the various types of SMPTE video timecode, and MIDI code is referred to as MTC or MIDI Timecode (also a standard from the Society of Motion Picture and Television Engineers—SMPTE, pronounced “simpty”), as it is in ACID. This is not a widely followed convention, however. In this discussion, a master device is the device or application that generates the MTC or MIDI Clock that is used to control the slave device, which is triggered and synchronized with the master.

MTC or MIDI Clock?
MIDI Clock is also a better choice for MIDI exclusive applications, such as MIDI editors and sequencers. MIDI Timecode, on the other hand, is more broadly targeted and can be used with everything from tape machines to video production equipment. In the end, the right choice is the one that works.

Generate or Trigger?
Should you generate MTC or trigger from MTC in ACID (you cannot trigger from MIDI Clock)? In other words, should ACID be the master device or the slave? Very broadly speaking, ACID seems to be better in the role of master, generating MTC or MIDI Clock to trigger and sync a slave application.

Generating MTC and MIDI Clock from ACID
Whether you choose MTC or MIDI Clock is largely a matter of what the slave application wants to use. In some situations—for example, when your project has tempo changes—the MIDI Clock may work better.

ACID can be configured to output or generate MTC to trigger and synchronize compliant external hardware devices and other MIDI software applications on your computer. Any ACID project can generate MTC regardless of whether you are using MIDI in the project. Although ACID’s new MIDI features are pretty spiffy, ACID is not primarily a MIDI tool, so using ACID for the loop-based part of a larger project with a dedicated MIDI device or application is a very useful combination.

Configuring MTC Generation
MTC and MIDI Clock are generated in ACID using a MIDI device on your computer. Configuring ACID to generate code is a matter of selecting a device to use, much the same as you select a MIDI device for MIDI playback at the track level. To set up ACID to generate MTC:

1. From the Options menu, select Preferences.
2. Click the Sync tab.
3. Under the Generate MIDI Timecode settings option, select an Output device. This is going to be a MIDI device, hardware or software, on your sound card.
From the Frame rate list, select the format you want to use to measure time.

The frame rate does not speed up or slow down time, only how it is measured. These are all various standards that have been used for different purposes over the years. For example, movies are twenty-four frames per second (fps), while color television in the United States is 29.97 fps. In audio, 30 fps is probably the most frequently used standard. More important than which particular standard you choose is that both of your devices (ACID and the other application) are using the same standard. MTC and other relevant timecodes are measured in hours, minutes, seconds, and frames (hh:mm:ss:ff), with the number of frames in a second being the only difference.

Triggering Another Device with ACID

Once ACID is set up as the master device to generate the appropriate MTC, the next step is to configure the slave device that will be triggered and synchronized. For software applications, this will involve selecting a port to listen from for MTC and making sure the frame rates are the same. The process will be very much like setting up ACID to listen for MTC, so see the following section for more information on that process. Of particular interest will be the section on Sonic Foundry’s Virtual MIDI Router, which allows you to select a port other than the default hardware MIDI port. Once the device is configured:

1. Cue the slave device or application to listen for MTC.
2. In ACID, from the Options menu, go to the Timecode item and select Generate MIDI Timecode or press F7.

http://www.muskalipman.com
3. Play back the ACID project.
4. ACID will immediately begin playback and will generate the MTC at the same time, using the output device or port specified in the Preferences dialog box. ACID’s transport controls (Play and Stop) will be used to control the external devices.

Since there are many types of devices, both hardware and software, that can listen for and be triggered by MTC, it is not possible to tell you how to set up your specific device. In the case of another software application, however, the behavior is very likely to be similar to the way ACID listens for MTC: For more information, see the next section on how to trigger ACID playback using an external MTC device.

There is a specific example later in this chapter detailing how this all works between ACID and Cakewalk Pro Audio (now SONAR).

NOTE

While playback will begin almost immediately and be perfectly synchronized, there can be a 1 to 3 second delay between when you press Stop in ACID and when the slave device stops.

The time display at the upper left of the timeline can display the MTC and MIDI Clock being sent out from ACID from the chosen device. To view the MTC that is being generated by ACID, right-click the time display and select MIDI Timecode Out from the context menu (see Figure 10.13).

As you have noticed, configuring and generating MIDI Clock is a similar process. As with MTC, you will need to select an output device, but MIDI Clock is measured in terms of tempo, measures, and beats, so it is not necessary to select a format. MIDI Clock can be generated by a shared device used for playback.

Figure 10.13
ACID-generated MTC can be viewed on the time display. Notice that you can also enable generation here as well.
Triggering ACID with MTC

ACID can also be used as the slave device, receiving MTC from a master device and using that to cue project playback and synchronize with a master device. A master device might be another software application on your computer or an external sequencer or dedicated MTC generator. The process is basically the reverse of the above: configure ACID, enable (arm) ACID to listen for MTC, begin playback or generation of MTC from the master device. To configure ACID to accept MTC:

1. From the Options menu, select Preferences.
2. Click the Sync tab.
3. Under the Trigger from MIDI Timecode settings option, select an Input device. This is going to be a MIDI device, hardware or software, on your sound card.

Most consumer-level sound cards have only one hardware MIDI port and, therefore, only one default driver for MIDI input. This input driver can be shared between two applications running at the same time, so you can trigger and synchronize playback from two applications at the same time. It is not possible to use this port to communicate between two software applications, but you can install a software-based Virtual MIDI Router (VMR) to create another MIDI input port so you can use another software application to trigger ACID. Sonic Foundry has included its VMR on the ACID CD. Specific usage is discussed later in this chapter. Once you have configured the master device to generate MTC, make sure the frame rate of the device and ACID match and then:

1. Ready the master device for playback and generation of MTC.
2. In ACID, from the Options menu, go to the Timecode item and select Trigger From MIDI Timecode or press Ctrl+F7.
3. Right-click the time display and select MIDI Timecode In. The display will show a MIDI Timecode In–Waiting…message to verify that ACID is listening for MTC.
4. Begin generation of MTC from the external device or start playback of the master device.

When ACID is chasing MTC, the time display message will show MIDI Timecode In–Locked and all controls within ACID will be disabled. While ACID can generate MTC and MIDI Clock data, it can only be triggered by MTC. This is not unusual, and you may find many devices that can accept MIDI Clock data from another device but may not be triggered by it.

Advanced Sync Preferences

There are a number of advanced MTC generation and triggering options. These can be accessed by clicking the Advanced button on the Sync tab in the Preferences dialog box. This opens the Advanced Sync Preferences dialog box with three tabs, one for each of the three sync options. If you have not selected a device in the Preferences dialog, the corresponding tab will not be visible in this dialog. Many of these options will need to be adjusted only when you are having problems with devices incorrectly interacting with ACID, perhaps responding, but not quickly enough.

- The MTC Input tab corresponds to the Trigger from MIDI Timecode settings item and allows ACID to compensate for breaks, delays, and other irregularities that may occur when listening to MTC generated by a master device. Once ACID has been triggered and synchronized, it can continue at the same rate and stay more...
or less in sync without any additional input. If ACID is responding to trigger messages but is falling out of sync, these options may help. You can keep Free-wheel for timecode loss selected in almost all situations. If ACID remains waiting (listening) and is not triggered by the master device, these options will not solve the problem.

- The **MTC Output** tab corresponds to the Generate MIDI Timecode settings item and allows you to configure which messages are sent to the slave device. In most situations, it will be necessary to generate Full-frame messages only on start and stop of playback and record. In almost all situations, you should not use internal timer, as this can cause the applications to drift out of sync.

- The **MIDI Clock Output** tab corresponds to the Generate MIDI Clock settings. This tab configures the Song Position Pointer (SSP) and is specifically used to sync the timeline cursor. The optional item at the top of the tab can be selected to always send a start signal when playing back, even if playback starts in mid-song. This will always make the slave device start at the beginning of the song. If this is not selected (which I recommend) and you begin playback in ACID in mid-song, the slave device will begin playback from the current cursor position in ACID, allowing you to stop and play ACID and maintain control of the slave.

Virtual MIDI Router

Sonic Foundry’s Virtual MIDI Router should be included on your ACID CD in the /extras/ folder, but it can also be downloaded (with your ACID serial number) from the Web site:

www.sonicfoundry.com/download/step2.asp?DID=317

To install this tiny (less than 10 KB) application/driver, you must install the VMR as a New Hardware device from the Windows Control Panel (see Figure 10.14). Detailed instructions can be found in the README file that is included with the driver and in ACID’s online Help and Manual. The final step is to select the number of ports you want to make available, from one to four. If you only want to communicate between ACID and one other application, one virtual port is sufficient. You will need to restart Windows after installing the VMR driver. After restarting, the number of ports created by the VMR can be configured by going to the Windows Control Panel, selecting the Multimedia option, and then clicking the Devices tab. Under the MIDI Devices and Instruments option, you will find the Sonic Foundry MIDI Router. You will need to restart your computer before these changes will take effect.

![Figure 10.14](http://www.muskalipman.com)

Final configuration of the Virtual MIDI Router after installation.
To use the VMR for syncing purposes, select a Sonic Foundry MIDI Router port (numbered 1-4) on the Sync tab in the Preferences dialog in ACID (see Figure 10.15) and set up the other application to listen or send over the same port.

Figure 10.15
ACID-generated MTC can be viewed on the time display. Notice that you can also enable generation here as well.

Syncing Example: SONAR to ACID
All of this talk of MTC, syncing, and virtual routing can seem rather complicated, and it is when you consider all of the potential devices that can be hooked together. As one real-world example, the following procedure shows you how to use ACID to trigger and sync Cakewalk SONAR (or Pro Audio 9) using MIDI Clock. In this case ACID is the master device and SONAR is the slave. If you have a choice, this seems to work better than the other way around. And, since SONAR is primarily a MIDI application, in this example, ACID is going to generate MIDI Clock, which SONAR also seems to prefer:

1. Run both ACID and SONAR.
2. Configure ACID to output MIDI Clock using 1 Sonic Foundry MIDI Router as an Output device for the Generate MIDI Clock settings on the Sync tab of the Preferences dialog box.
3. Right-click the time display and select MIDI Clock Out to view the generated clock. Press Shift+F7 on your keyboard to enable (arm) ACID. The time display will read “MIDI Clock Out–Enabled.”
4. In SONAR, from the Options menu, select MIDI Devices. In the MIDI Ports dialog, on the Input Ports list, select 1 Sonic Foundry MIDI Router (single click it to highlight it) and click the OK button.
5. From the View menu, select Toolbars and make sure the Sync toolbar is selected and visible. Click the MIDI button and press Play. A message will appear in the lower left corner of the workspace reading, “Press ESCAPE to cancel... Waiting for MIDI Sync.”
6. Press Play in ACID. ACID will begin playing and SONAR will immediately follow.

http://www.muskalipman.com
Every time you stop playback in ACID, you will need to re-arm SONAR to listen for MIDI Clock. SONAR will automatically sync playback beginning at any point in your ACID project. See Figure 10.16 for a summary of the various settings and what you should see when everything is properly configured and armed.

Figure 10.16
ACID as the master device triggering and syncing Cakewalk Pro Audio with MIDI Clock. SONAR works the same way, although the application has a different look.

NOTE
SONAR seems to work better as the slave, with ACID as the master. You can crash your computer by assigning SONAR to output MTC and listen for MTC on the same port, especially if ACID is already using the port to output MTC.

FX and MIDI Tracks

One of the largest criticisms about MIDI sound is that it sounds very unnatural. This makes sense since it is computer generated, but advances in MIDI technology have made it more and more realistic. Perhaps the greatest advance in recent years has been the widespread use of wavetable synthesis, which uses real instruments to create the sound. MIDI authoring tools have also gotten better and better, even allowing the composer to add imperfections in timing to individual notes, simulating real human performers. Of course, controlling the quality of samples and the details of MIDI authoring are all well outside of ACID’s domain.

MIDI files using even the best wavetable synthesis also tend to sound very clean and flat. This is because the samples need to be created to be used in the widest variety of situations. Almost all samples are, therefore, completely devoid of any sense of space or ambience. ACID FX plug-ins can be very useful in making an artificially perfect and balanced MIDI file sound more natural by adding this sort of space to the track.
The best plug-in for creating space is probably the Reverb FX. To add a Reverb plug-in to a MIDI track:

1. Make sure the MIDI track is using the Master device for playback.
2. Click the FX button on the MIDI track.
3. In the Audio Plug-in window, click the Edit Chain button.
4. In the Plug-In Chooser dialog, select a Reverb plug-in, click the Add button, then click the OK button.
5. The controls for the Reverb plug-in are visible in the Audio Plug-in window. Solo the MIDI track and adjust the Reverb. Then unsolo the track and finish adjusting the FX in relation to the project.

There is more detailed information on using FX in general in Chapter 8, where you can also find a detailed examination of the Reverb plug-ins. Be careful not to overdo the Reverb effect, which is easy to do since more space generally sounds better. At some point, however, the Reverb will begin to sound like, well, reverb and will be instantly perceived as artificial. You also need to carefully try to match the sense of space in the MIDI track with the other media files used in the project. While it is not technically an effect, panning individual voices 10 percent to 20 percent left and right in the Track Properties dialog box for a MIDI track can do wonders for a sense of space. MIDI files very often have all of the various voices bunched up in the middle, which adds to the artificial sound of the files.

Especially useful in improving the quality of MIDI in ACID are Equalization plug-ins. Any of these can be used to bring out the specific voices you want to emphasize, although keep in mind that you can also do this by increasing the volume of individual voices in the Track Properties dialog box. Boosting the bass frequencies a little can often add richness to MIDI tracks.

NOTE

MIDI tracks must be routed through the Master device on the Track Header to use FX. Other devices are external to ACID and cannot be processed by ACID, but they will still work for playback.

http://www.muskalipman.com